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1. INTRODUCTION

NASA's Mission to Planet Earth (MTPE) is engaged in the study of changes in our global
environment, and mankind’s role in such changes.  Taking advantage of the unique perspective
available from space, instruments on research satellites launched by NASA are being used to
observe and assess large-scale environmental processes, with an emphasis on climate change.
MTPE satellite data, complemented by aircraft and ground data, will enable us to better understand
environmental changes, to determine how human activities have contributed to these changes, and
to understand the consequences of such changes.

In support of the MTPE goals, NASA plans to launch the Advanced Microwave Scanning
Radiometer (AMSR) on its Earth Observing System (EOS) PM-1 satellite in late 2000.  The PM-1
AMSR is a passive microwave instrument modified from the AMSR originally designed and built
by Mitsubishi Electronics Corporation for deployment on the Japanese Advanced Earth Observing
Satellite-II (ADEOS-II).  From AMSR brightness-temperature measurements a variety of
geophysical variables can be estimated describing the states of the atmosphere, ocean, cryosphere,
and land-surface.  Our investigation focuses on estimation of three land surface variables: surface
soil moisture (or soil “wetness”), me; land-surface temperature, Te; and vegetation water content,
we.  These variables will be derived as Level 2 products, and will be the deliverable “EOS
Standard Products” of this investigation.  This document describes the physical models, retrieval
algorithm, processing procedures, and validation approach for generating and evaluating these
products.  The data products will be used for a variety of research and operational purposes,
including surface energy and water balance studies, large-scale hydrologic modeling, numerical
weather prediction, climate modeling, and monitoring of floods, land-cover change, droughts, and
other climatic anomalies.  These studies are central to the “Seasonal-to-Interannual Climate
Variability and Prediction” and “Natural Hazards” research objectives of NASA’s MTPE program,
and will contribute also to the “Land-Cover and Land-Use Change” and “Long-Term Climate”
research objectives.

The procedure for deriving the variables me, Te, and we from AMSR data is based on a
simplified, but state-of-the-art, physical model of microwave emission from a layered soil-
vegetation-atmosphere medium.  The forward model is nonlinear, hence an iterative, least-squares-
minimization inversion method is employed in the retrieval algorithm.  The retrieved variables
represent area-averages comensurate with the 6.9-GHz AMSR footprints.  In addition, the
retrievals of me and Te represent weighted averages over a vertical sampling depth in the soil and/or
vegetation.  Some parameters of the physical model cannot be measured, but are estimated from
physical principles or derived empirically a-priori.  All parameters are assigned uncertainty
estimates, enabling an overall estimate to be made of the geophysical-variable retrieval
uncertainties.  As the vegetation cover increases, the retrieval errors for me and we also increase.
For dense vegetation these variables cannot be retrieved.  The retrieval algorithm is rapid and
robust however, and correctly identifies when the reliability threshhold has been exceeded.  This
has been demonstrated using the current version of the algorithm on historical Nimbus-7 SMMR
data, which has similar low-frequency channels to AMSR.  Enhanced versions of the algorithm, to
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be ready at launch, will have the capability to incorporate ancillary data from external sources, to
aid in initializing and constraining the retrieval algorithm.  The present version is a stand-alone
algorithm, however, and does not assume any externally provided input.  As part of this
investigation, soil- and atmospheric-model data assimilation will be used to develop higher-level
derived products, such as vertical moisture and temperature gradients in the soil, and energy fluxes
at the land surface.  All products of this investigation will conform to EOSDIS standards and
guidelines.

2. OVERVIEW AND BACKGROUND

Routine, global measurements of soil moisture, and a better understanding thereby of large-
scale land-surface hydrologic processes, are high priorities for MTPE and EOS.  Earth system
modeling studies depend on the availability of soil moisture information for initializing and
validating atmospheric general circulation models and soil hydrologic models.  No other EOS or
MTPE mission sensor will provide this measurement.  

Measurements of land-surface temperature and vegetation dynamics are needed for surface-flux
process studies, and climate and ecosystem modeling.  AMSR measurements of these variables
will complement similar measurements using optical and thermal infrared sensors on EOS (e.g.
MODIS and AIRS).  Although passive-microwave measurements are of lower spatial resolution,
they are less affected by aerosols and clouds, and are responsive to different dynamic ranges of
vegetation structure and biomass than are optical and infrared measurements.  There is potential for
improved synergistic products of temperature and vegetation using combined microwave, infrared,
and optical data.  

Vegetation dynamics, surface temperature, and surface wetness (soil moisture) are three of the
twenty-four measurement areas identified as high-priorities by the MTPE program (MTPE, 1996).
The AMSR-derived products generated by this investigation, we, Te, and me, will address directly
and uniquely these three critical areas.

Several studies during the past few years have investigated the influence of land-surface soil
moisture on the atmospheric boundary layer (e.g. Brubaker and Entekhabi, 1996) and have
provided insights into the importance of soil moisture in controling the feedbacks between land
surface and atmosphere that influence climate (Shukla and Mintz, 1982; Delworth and Manabe,
1989).  Improved characterizations of land-surface soil moisture, temperature, and vegetation
states in numerical weather-prediction models have been shown to provide significant improvement
in forecast skills.  For example, the large impact of wet versus dry soil moisture conditions on 30-
day precipitation forecasts using the European Centre for Medium-range Weather Forecasts
(ECMWF) model is shown in Figure 1 (Beljaars et al., 1996).  The lack of a global observational
capability to provide information on the time and space variations of the moisture, temperature, and
vegetation surface states is a major impediment to progress in these fields.  The land-surface
products provided by AMSR will fill an important gap in the suite of MTPE/EOS measurements.
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The terminologies and parameterizations used in describing the surface states are not well
defined or consistently applied.  The term “soil wetness” is often used to describe the amount of
soil water computed from a land-surface model, i.e. a soil-vegetation-atmosphere (or “SVAT”)
moisture- and heat-flux scheme, with given atmospheric forcing.  However, the soil wetness, so
defined, is model-dependent—different SVAT models can give different values of soil wetness
while having similar estimates of water and energy exchange.  Also the soil depth within which the
soil wetness is defined varies according to the model (Wei, 1995).  When referring to land-surface
temperature, the terms “canopy temperature”, “skin temperature”, “aerodynamic temperature”, and
“radiation temperature” may be implied, according to the context.  This depends on the SVAT
model being used, the viewing direction and wavelength of the sensor, and the 3-dimensional
characteristics of the surface (Norman and Becker, 1995).  Similarly, various parameters have
been used to describe vegetation state, including “biomass”, “leaf-area index” (LAI), “normalized
difference vegetation index” (NDVI), etc.  In this document we will define the meanings of the
AMSR-derived variables me, Te, and we, and indicate how they may be related to some of the
definitions above.  As part of the research planned in this investigation, techniques will be
developed to relate the AMSR-derived variables directly to those required by hydrologic model and
land-surface parameterization schemes, and numerical weather prediction models.

2.1 EXPERIMENTAL OBJECTIVE

The objective of this investigation is to provide global, remotely-sensed, land surface products
(in regions not covered by snow or ice) of use to the MTPE research and operational forecasting
communities.  The key land-surface variables that can be derived from AMSR data are the surface
soil moisture, me, the land-surface temperature, Te, and the vegetation water content, we.  Soil
moisture has been considered the primary measurement objective of this investigation for EOS.
However, surface temperature and vegetation water content must also be estimated,
simultaneously, as required corrections in the soil moisture retrieval procedure.  Furthermore, as
mentioned earlier, these variables are high-priority requirements in their own right for climate and
ecological modeling and monitoring purposes.  The primary objectives of this investigation can
thus be summarized as follows:

• Derive a self-consistent set of the land-surface geophysical variables, me, Te, and we, globally
(where feasible, as limited by dense vegetation), from the EOS PM-1 AMSR data.  These
variables will be estimated at a spatial resolution of approximately 70 km (equivalent to the
spatial resolution of the lowest AMSR frequency) on a swath-sampled basis.  These will be
Level 2 Standard Products.  Provide accuracy estimates for these geophysical variable
estimates.

• Validate the accuracies of the Level 2 products during the post-launch validation phase, and
document the algorithms, caveats, and data descriptions necessary for other researchers to
utilize the data quantitatively in subsequent scientific studies.

• Make the Level 2 data products, algorithms, and metadata available publicly through EOSDIS.
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• Demonstrate the utility of the derived products for: (a) improved understanding of large-scale
land-surface hydrologic processes; (b) validating and initializing climate and weather prediction
models; and (c) monitoring land surface change and climatic anomalies (including floods and
droughts).

2.2 HISTORICAL PERSPECTIVE

To date, rather limited attention has been paid to the use of spaceborne passive-microwave data
for land sensing.  Previous and existing spaceborne microwave radiometers have been considered
sub-optimal, in terms of spatial resolution and frequency range, particularly for soil moisture
sensing.  The Scanning Multichannel Microwave Radiometer (SMMR), launched on the Nimbus-7
satellite in 1978, had a spatial resolution of ~140 km at its lowest frequency of 6.6 GHz.  The
Special Sensor Microwave Imager (SSM/I), launched in 1987 has a lowest frequency of 19.3
GHz, at which even small amounts of vegetation mask the surface soil moisture signal.  The
SMMR and SSM/I were designed primarily for oceanic, atmospheric, and cryospheric studies.
Low frequencies (~1 to 3 GHz) are preferable for soil moisture sensing, since attenuation through
vegetation is less at longer wavelengths, and the sensitivity to moisture through the top few
centimeters of soil is greater at lower frequencies.  Notwithstanding this, as discussed below, the
6.6 and 10.7 GHz channels of the SMMR (similar to the low-frequency AMSR channels) have
been shown to be sensitive to surface soil moisture under low-vegetation conditions.  The
improved spatial resolution provided by AMSR (~70 km) is reasonably well-matched to the grid
scales of the global atmospheric general circulation models (~50-100 km).  The comparative
performance characteristics of the SMMR, SSM/I, and AMSR are shown in Table 1 (the EOS
AMSR instrument is described further in Section 2.3).

The potential of the 6.6 and 10.7 GHz channels of the SMMR for soil moisture monitoring
was first investigated by Wang (1985) and Njoku and Patel (1986).  These studies were followed
by others (Owe et al., 1988; Choudhury and Golus, 1988; Kerr and Njoku, 1990; Owe et al.,
1992; and van de Griend and Owe, 1994).  The SMMR was also shown to be useful for
monitoring seasonal flooding (Sippel et al., 1994; others), and for vegetation monitoring
(Choudhury et al., 1987; Calvet et al., 1994).  McFarland et al. (1990), Calvet et al. (1994), and
Njoku(1995a) showed that SMMR and SSM/I data can be used to estimate surface temperature.
The effects of the intervening atmosphere on land-surface measurements were investigated by
Choudhury et al. (1992) and Kerr and Njoku (1993).  These studies, and others, have shown the
feasibility and potential of future AMSR data for land research.
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Soil Moisture and Flooding

Estimates of large-scale surface soil moisture for comparison with satellite observations can be
derived from precipitation and surface meteorological data coupled with models of surface energy
and water balance.  Such estimates are currently available as forecast outputs of atmospheric
general circulation models using four-dimensional data assimilation.  An earlier, much-simplified
implementation of this approach was the Antecedent Precipitation Index (API), which has been
used commonly as an indicator of soil wetness.  Shown in Figure 2(a) are SMMR brightness
temperatures, TB, at 6.6 GHz horizontal polarization over two regions in Kansas and Texas plotted
as a function of API for five years of data between the months of May and August (Choudhury and
Golus, 1988).  The relationship between API and TB is clearly shown.  The Texas region
(Quadrant (1,3)) has less vegetation and hence the data show a steeper slope (greater sensitivity to
surface moisture).  

A different model was used by Owe and van de Griend (1990) to estimate large-area soil
moisture from precipitation measurements in Botswana (Figure 2(b)).  Figure 2(c) shows their
comparisons of SMMR-derived surface emissivity at 6.6 GHz versus soil moisture, using
corrections for vegetation obtained using AVHRR Normalized Difference Vegetation Index
(NDVI) data (van de Griend and Owe, 1994).  These comparisons have some limitations.  The
model-based surface soil moisture estimates rely on sparsely-sampled precipitation data and may
not represent well the moisture conditions in the top few centimeters of soil at the time of the

Table 1: Comparative operating characteristics of SMMR, SSM/I, and AMSR

Parameter SMMR
(Nimbus-7)

SSM/I
(DMSP)

AMSR
(EOS)

Frequencies (GHz) 6.6, 10.7, 18,
21, 37

19.3, 22.3, 37,
85.5

6.9, 10.7, 18.7,
23.8, 36.5, 89

Altitude (km) 955 860 705

Antenna size (m) 0.79 0.6 1.6

Incidence angle (deg) 50.3 53.1 55

Footprint size (km)
at 6.6 GHz
at 37 GHz

140
27

N/A
35

70
14

Swath width (km) 780 1400 1445

Launch date (1978—No longer
operating)

(1987—Series in
orbit)

2000
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satellite overpasses.  Nevertheless, fairly good correlations are obtained between the spaceborne
microwave observations and the surface soil moisture.  Improved algorithms can be used to
account for vegetation in a physically-based manner using multichannel microwave data (as shown
later herein), without the need for empirical fine-tuning and ancillary NDVI data in each specific
region.

Surface Temperature

Microwave surface temperature retrievals have been tested in limited case-studies using linear
regression algorithms developed for SSM/I (e.g. McFarland et al., 1990).  Comparison data used
by McFarland et al. were surface air-temperatures obtained in the early morning hours close to the
times of the satellite overpasses.  Accuracies of 2 to 2.5°C were obtained (Figure 3(a)) which were
supported by results of simulation studies (Njoku, 1995a) (Figure 3(b)).  Practical retrieval
algorithms for global application must take into account the vertical and horizontal temperature
variabilities that exist at the heterogeneous vegetation/soil surface.  Microwave radiometer
footprint-average temperature retrievals will be most accurate and easy to interpret for
homogeneous surfaces (bare soil or fully vegetated), and less easy to interpret for footprints
containing comparable fractions of vegetation and bare soil (Njoku et al., 1995b).  Nonlinear
effects of vegetation on brightness temperature result in bias errors when using linear retrieval
algorithms, thus nonlinear retrieval methods are preferred for global algorithms applicable over a
wide dynamic range of vegetation biomass.  This is the approach used in this investigation.

Surface Vegetation

Vegetation studies using spaceborne microwave radiometry have been limited mainly to use of
a qualitative index consisting of the difference, ∆T, between vertically and horizontally polarized
brightness temperatures at 37 GHz (Choudhury et al., 1987; Townshend et al., 1989).  This index
is simple to use, and the higher spatial resolution available at 37 GHz versus the lower-frequency
channels of the SMMR and SSM/I, is advantageous.  However, the index is not easily related to a
physically-based vegetation quantity.  The vegetation opacity, on the other hand, is a parameter of
the radiative transfer equation, and is approximately linearly related to the vegetation water content
in the 1 to 10 GHz range.  Thus, it is possible to make quantitative estimates in this frequency
range of the vegetation water content (which is related to the vegetation biomass).  It is also
important to use the lower frequencies (~6 and 10 GHz), rather than 37 GHz, in estimating
vegetation parameters in order to cover a larger dynamic range of vegetation without saturation.

Heterogeneous Surfaces

The effects of mixed surface types within the sensor footprints must be taken into account in
microwave retrievals and their applications, due to the heterogeneity of land surfaces.  Retrievals of
surface parameters from the observed brightness temperatures represent footprint-averaged
quantities which are nonlinear area-weighted averages of the component quantities making up the
scene— except in the case where vegetation is low, in which case the area-weighted averages are
approximately linear (Njoku et al., 1995b).  The difference between linear and nonlinear weighted
averages is only significant, however, where two dominant components with large contrasts fill the
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footprint in approximately equal amounts.  The question of how averaging affects the usefulness of
the estimates is a somewhat different (though related) issue, and depends on the flux
parameterization schemes of the land-surface models.  Much attention has been paid to this aspect
recently (e.g. Lhomme et al., 1994; Raupach and Finnigan, 1995), and collaborations with
ongoing land-surface modeling investigations and projects, such as the Project for Intercomparison
of Land-surface Parameterization Schemes (PILPS), will be pursued as part of this investigation.

Integration of Retrievals with Soil-Vegetation Modeling

Recent studies have considered approaches in which microwave radiances are assimilated
directly into predictive models of moisture and heat flow in soils and ecosystem functioning
(Entekhabi et al., 1994; LoSeen et al, 1995).  Coupled microwave radiative transfer and
soil/vegetation heat- and moisture-flux model algorithms can be used to retrieve higher-level
products, such as subsurface soil moisture and temperature profile information (as opposed to
surface-only values) and surface heat fluxes.  While such products are currently exploratory,
research will be performed as part of this investigation to develop these products for evaluation
purposes (they will be developed initially for application in bare or sparsely-vegetated regions).

An activity has also been initiated by the Principal Investigator of this investigation (E. Njoku),
as part of a separate soil moisture study,  to collaborate with the National Center for Environmental
Prediction (NCEP) in developing techniques for assimilation of microwave-derived soil moisture
information into the operational forecast models (F. Chen, personal communication, 1996).  This
work will involve linkage of microwave-derived surface soil moisture estimates to root zone soil
moisture, and comparison of model-forecast surface moisture fields with microwave-derived
fields.

2.3 INSTRUMENT CHARACTERISTICS

2.3.1 Instrument Description

Table 2.  EOS Product Levels

————————————————————————————————————
LEVEL DEFINITION
————————————————————————————————————

0 Raw instrument data at full resolution

1 Unpacked or calibrated instrument data at full resolution

2 Derived geophysical parameters at the same resolution as Level 1 data

3 Derived geophysical parameters mapped on uniform space-time grid scales, 
typically an Earth-located grid

4 Derived geophysical parameters based on models and other products from one 
or more instruments

————————————————————————————————————
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AMSR is a twelve-channel, total-power, passive-microwave system that measures brightness
temperature at 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz.  Vertical and horizontal polarization
measurements are made at all frequencies.  The EOS AMSR instrument is a modified version of the
design developed for the ADEOS-II AMSR, and consists of a 1.6-m-diameter offset parabolic
reflector, fed by an array of six feedhorns.  The reflector and feedhorn array are mounted on a
drum which contains the radiometers, digital data subsystem, mechanical scanning subsystem, and
power subsystem.  The reflector/feed/drum assembly is rotated about the axis of the drum by a
coaxially-mounted bearing and power-transfer assembly.  All data, commands, timing and
telemetry signals, and power pass through the assembly on slip-ring connectors to the rotating
assembly.

A cold-sky reflector and a warm load are mounted on the transfer-assembly shaft and do not
rotate with the drum assembly.  They are positioned off-axis such that they pass between the
feedhorn array and the parabolic reflector once each scan.  The cold-sky reflector reflects cold sky
radiation into the feedhorn array.  This, and the warm load, serve as calibration references.
Corrections for antenna pattern spillover and cross-polarization effects are incorporated in the Level
1 data processing algorithms (see Table 2 for a generic definition of the EOS product levels).

The AMSR rotates continuously about an axis parallel to the local spacecraft vertical at 40 rpm
(i.e. with a period of 1.5 s).  At an altitude of 705 km, it measures the upwelling scene brightness
temperatures over an angular sector of ± 61° about the sub-satellite track, resulting in a swath
width of 1445 km.  During the period of 1.5 seconds the spacecraft sub-satellite point travels 10
km.  Even though the instantaneous fields-of-view are different for each channel, active scene
measurements are recorded at equal intervals of 10 km (5 km for the 89 GHz channels) along the
scan.  The half-cone offset angle of the reflector is 47.4° which results in an Earth-incidence angle

of 55°.  Tables 1 and 3 list the pertinent performance characteristics.

2.3.2 Calibration
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The accuracy of the AMSR brightness temperature measurement includes the rms accuracy, or
sensitivity, ∆T, and the absolute calibration accuracy.  The sensitivity per sample for each
frequency is shown in Table 3, and is a function of the receiver noise temperature, integration time,
and bandwidth.

The radiometer calibration accuracy budget, exclusive of antenna pattern correction effects, is
comprised of three major contributions: a warm load reference error, a cold load reference error,
and radiometer nonlinearities and errors.  Accounting for all errors, the total estimated sensor bias
error is 0.66 K at 100 K, and increases slightly with temperature to 0.68 K at 250 K.

The major part of the warm-load reference error comes from the following four components:
(a) the accuracy of the platinum resistance thermistors (PRTs) as measured by the manufacturer—
on of the order of ± 0.1 K; (b) the temperature gradient over the load area (the SSM/I gradient
reached values as high as ±0.4 K); (c) load–feedhorn coupling errors due to the design of the
system; and (d) reflections out of the feedhorn due to receiver electronics.  An estimate of the warm
load reference error, taking the root-sum-squared of the aforementioned components, is ±0.5 K.

The error in the cold reference measurement is caused mainly by the residual error in coupling
between the cold sky reflector and the feedhorn.  This is estimated to be ±0.5 K. Other factors
affecting the cold reference error are the reflections out of the feedhorn due to the receiver
electronics, and the resistive losses of the cold sky reflector itself.  An estimate of this error can be
as high as ±0.62 K.

The main factor influencing radiometer nonlinearity is imperfect operation of the square law
detector.  This nonlinearity results in an error that can be estimated during the thermal-vacuum
calibration testing.  (On SSM/I this error was ±0.4 K.)  Another source of error in the receiver
electronics is the gain drift caused by instrument temperature variation over one orbit. This error

Table 3.  PM-1 AMSR Nominal Performance Characteristics

————————————————————————————————————
Center Frequencies (GHz) 6.925 10.65 18.7 23.8 36.5 89.0
————————————————————————————————————
Bandwidth (MHz) 350 100 200 400 1000 3000
Sensitivity (K) 0.3 0.6 0.6 0.6 0.6 1.1
IFOV (km x km) 76 x 44 49 x 28 28 x 16 31 x 18 14 x 8 6 x 4
Sampling Rate (km x km) 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 5 x 5
Integration Time (ms) 2.6 2.6 2.6 2.6 2.6 1.3
Main Beam Efficiency (%) 95.3 95.0 96.3 96.4 95.3 96.0
Beamwidth (degrees) 2.2 1.4 0.8 0.9 0.4 0.18
————————————————————————————————————
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depends on the design of the receiver and the overall design of the sensor.  The drift can be as high
as ±0.24 K for a temperature variation of less than 10 °C over one orbit.

2.3.3 Standard Data Products

For each EOS instrument, there exists a suite of EOS standard data products.  Each EOS
instrument science team develops, validates, and maintains the alogrithms and science software that
produce their instrument’s standard data products.  EOS defines five levels of EOS standard data
products, described in Table 2.  Level 1 includes three sublevels—Level 1A, which refers to
uncalibrated data (with engineering and ancillary data appended); Level 1B, which refers to
radiometrically calibrated data at the original sampling locations; and Level 1C, which refers to
calibrated, co-registered, and comensurate data, such that for given subsets of channels, the
brightness temperatures of all channels in those subsets represent the same spatial regions on the
ground (the effective antenna patterns and sampling locations are the same).  The current list of
standard data products to be produced by the EOS AMSR Science Team is shown in Table 4.  The
Level 2 land products provided by this investigation will be generated from the Level 1C product

Table 4.  AMSR Standard Data Products

————————————————————————————————————
Product Parameter Accuracy Spatial
Level Resolution (km)
————————————————————————————————————

1C Brightness Temp. (Global), K 0.2 - 0.7 K 6 - 76

2 Wind Speed (Ocean), m s-1 1.5 m s-1 14

2 Precipitable Water (Ocean), g cm-2 0.2 g cm-2 28

2 Cloud Liquid Water, mg cm-2 3 mg cm-2 28
Total Column (Ocean)

2 Sea Surface Temperature, K 0.5 K 76

2 Precipitation (Land), mm hr-1 40% 14

2 Precipitation (Ocean), mm hr-1 20% 49

2 Sea Ice Type 11% 14

2 Sea Ice Concentration, % 7% 14

2 Snow Depth, TBD TBD 31

2 Snow Water Content, TBD TBD 31
(Liquid Water Equivalent)

2 Surface soil moisture, g cm-3 0.06 g cm-3 76
2 Land-surface temperature, °C 2.5 °C 76
2 Vegetation water content, kg m-2 76
———————————————————————————————————————



11

provided by F. Wentz.  It is important that we use this Level 1C product, since the multichannel
retrieval algorithm assumes that, at each retrieval point, the 6.9 and 10.6 GHz brightness
temperatures are characteristic of the same region of terrain (i.e. they have the same footprint size
and location).

3. ALGORITHM DESCRIPTION

3.1 THEORETICAL DESCRIPTION

The retrieval algorithm for me, Te, and we is based on a physical radiative-transfer model
which relates parameters describing the surface and atmosphere to the observed brightness
temperatures.  The model is a synthesis of state-of-the-art knowledge of microwave emission and
transfer through soils, vegetation, and the atmosphere.  The model represents these processes in
simplified form, but as realistically as possible at the spatial scales appropriate to the AMSR
footprints.  The parameterization of the forward model is designed with the inverse retrieval
algorithm in mind.  Errors in model-approximations of the true physics, and a-priori uncertainties
in the model parameters, will be reflected in the resulting retrieval errors.  These model errors and
uncertainties have been estimated as quantitatively as possible, and their influences on retrieval
error have been evaluated by a sensitivity analysis.  Soil surface roughness and vegetation
scattering are difficult to model accurately at frequencies above 37 GHz, and limited experimental
measurements of soils and vegetation have been performed above this frequency.  Hence, our
physically-based retrieval algorithm uses only the lower AMSR frequencies (6.9 and 10.7 GHz).
The 37 and 89 GHz channels of AMSR will be used as qualitative indices only, for long-term
monitoring and quality control.

3.1.1 Physics of the Problem

(a) Emission from bare soils

For a homogeneous soil with smooth surface, the reflectivities at vertical and horizontal
polarizations, rov and roh, are given by the Fresnel expressions:

rov  =   εr cosθ - εr - sin2θ
εr cosθ + εr - sin2θ

 
 2

(1)

roh
  =   cosθ - εr - sin2θ

cosθ + εr - sin2θ
 
 2

(2)

where θ is the incidence angle (relative to the surface normal), and εr is the complex dielectric
constant of the soil.  For a given frequency, the dielectric constant depends primarily on the
volumetric soil moisture content, m, and to a lesser extent on soil type.  There is also a slight
dependence on soil temperature.  The soil can be considered as a component mixture of soil
particles and pore spaces filled with air and water (Wang and Schmugge, 1980; Dobson et al.,
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1985).  The model used in this investigation to relate dielectric constant to soil moisture is that of
Dobson et al (1985)  The dielectric model requires the specification of the sand and clay mass
fractions, s and c, (which describe the soil texture) and the soil bulk density, ρb.  The smooth-
surface emissivity, eop, is related to the reflectivity,rop, by reciprocity:

eop  =  1 - rop (3)

where the subscript p denotes either vertical or horizontal polarization (p = v or h).  Figure 4
shows experimental observations of emissivity as a function of soil moisture at 1.4 GHz, for bare,
smooth soils.  Also shown are the theoretical curves derived from the two dielectric models
mentioned above.  The high sensitivity of brightness temperature to soil moisture, ~3 K/%
volumetric soil moisture (for a soil temperature of 300 K), is the primary driver for the use of
microwave radiometry for soil moisture sensing.

For a soil of uniform temperature, Ts, the soil brightness temperature, Tbsp, is given by

Tbsp  =  eop Ts (4)

Under natural conditions, the soil temperature has a nonuniform, time-varying, vertical profile
determined by the net heat-flux at the surface and the soil thermal properties.  The moisture profile
is also nonuniform and time-varying, driven primarily by the net moisture flux at the surface
(precipitation minus evaporation), and dependent on the hydraulic properties of the soil.  The
temperature- and moisture-profile dynamics are coupled, since the thermal properties depend on the
moisture.  For a soil of homogeneous characteristics (i.e. thermal and hydraulic properties), the
space-time dynamics of the temperature and soil profiles can be described straightforwardly using
one-dimensional equations of coupled moisture- and heat-flux since temperature and moisture vary
in the vertical dimension only.  For heterogeneous soils, such modeling is difficult since the spatial
variability extends to three dimensions and the heterogeneity is difficult to parameterize for
modeling purposes.  Fortunately, for the microwave retrieval algorithm, we do not need to model
the dynamics of the soil profiles—we need only to understand the extent of typical profile
variability encountered in nature and to model the effects of such variability on the emitted
brightness.  To the extent that the soil heat- and moisture-flux models provide time-dependent
information and constraints on the variability of the moisture and temperature profiles, these
models and information can be incorporated beneficially into the retrieval algorithms to provide
improved soil moisture and temperature estimates.

For nonuniform temperature and moisture profiles, the dependence of the soil brightness
temperature, Tbsp, on subsurface variability of temperature, Ts(z), and moisture, m(z), can be

expressed as:

Tbsp  =  Ts(z)
−∞

0

 Fp{εr(z)} dz (5)



13

where z is the vertical dimension (positive in the upward direction).  The form of Fp{εr(z)} can be
determined using models of coherent electromagnetic propagation in a continuous or stratified
medium (Njoku and Kong, 1977).  

    Approximate        Form     :  An approximate form for Fp{εr(z)}, valid when the moisture profile does
not vary rapidly over the depth of a wavelength in the medium (the wavelength in the medium
varies with dielectric constant and hence also with depth), can be determined using an incoherent
radiative transfer approach, which leads to expressions equivalent to (5):

Tbsp  =  (1 - rop) Tse (6)

Tse  =  Ts(z)
−∞

0

 FNp{εr(z)} dz (7)

where rop now denotes the Fresnel reflectivity of a homogeneous soil of dielectric constant εr(0),

(i.e. εr(z) at z = 0), Tse is the soil “effective temperature”, and FNp{εr(z)} is an approximation of

Fp{εr(z)}, normalized to an integral of unity:

FNp{εr(z)}  =  α(z) exp - α (z')
z

0

 dz'  (8)

α(z)  =  2 Im 2π
λ

 εr(z) - sin2θ  (9)

Equations (6)-(9) can be derived directly as a first-order approximation to Equation (5) (Njoku and
Kong, 1977).  They express the fact that, to first order, the reflectivity (and emissivity) of a soil is
determined by the dielectric constant (and hence the soil moisture) at the soil surface (z = 0), while
the brightness temperature is affected by the subsurface temperature and moisture profiles.  This
approximation is convenient, since Equation (6) has a simple form equivalent to Equation (4).  As
the wavelength increases, the approximation becomes less accurate, as the emissivity becomes
dependent not just on the surface dielectric constant but on the subsurface gradient of the dielectric
constant also.  However, the approximation is still useful, provided that the emissivity is
considered to be representative of the average moisture within a top soil layer of depth dm, the
“moisture sensing depth”, where dm depends on wavelength.  Simulations have shown (Wilheit,
1978), that dm is about a tenth of a wavelength in the medium.  Thus, dm is a variable that is
dependent on the surface soil moisture content.  The longest AMSR wavelength is 4.3 cm, and for
a dry soil the wavelength in the medium will be about half this value.  Thus, we find for AMSR
that dm < 2 mm.  The AMSR soil moisture retrieval is therefore very much a “skin surface” value.

The approximation becomes invalid at longer wavelengths if there are sharp moisture profile
discontinuities close to the surface, such as for a rapidly drying surface or sharp wetting front, or a
shallow water table.  Although these occurences do not comprise a significant percentage of natural
conditions, such conditions may cause anomalous retrievals.
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     Weighting         Functions:     Figure 5 shows the weighting functions, FNp{εr(z)}, for two

representative moisture profiles.  The bulk of the soil emission comes from the neighborhood
around the maxima of the weighting functions, which may occur significantly below the surface
for some profiles.  For uniform soil moisture (i.e. uniform dielectric constant), and nadir-viewing,
FNp{εr(z)} takes the simple form:

FNp{εr(z)}  =  α exp αz  (10)

α  =  4πn"
λ

(11)

where n" is the imaginary part of the refractive index (square root of the dielectric constant), i.e.
n"  =  Im εr .  The “temperature sensing depth”, dt = α -1, is defined as the depth of the surface
layer from which ~63% of the emitted radiation originates.  From an alternate perspective, dt is the
distance in the medium over which the intensity of transmitted radiation decreases by a factor of e-1

= 0.368 (for a medium of uniform temperature and moisture).  dt is also commonly referred to as
the “penetration depth” in the medium.  In summary, the moisture and temperature sensing depths,
dm and dt, define the approximate depths within which the soil moisture influences emissivity, and
the soil moisture and temperature together influence effective temperature, respectively.  These
parameters are useful in describing the characteristics of microwave emission from soils.  Figure 6
shows the dependence of dt on frequency and soil moisture for a sandy soil.

    Rough        Surface:     The expressions for reflectivity (Equations (1) and (2)) must be modified for
rough surfaces, to take into account the effects of surface scattering.  The reflectivity of a rough
soil, rsp, can be expressed as (Peake, 1959):

rsp(θ, φ)  =  1
4π

  γpp(θ, φ; θ ' , φ' ) + γpq(θ, φ; θ ' , φ' ) dΩ'
2π

(12)

in which the polarizations (p, q) refer to (h, v), or vice versa, and γpp and γpq are the co- and

cross-polarized bistatic scattering coefficients for radiation scattered from an incident direction (θ,

φ) into a scattered direction (θ', φ').  The solid angle integration is taken over the upper
hemisphere.  The bistatic coefficients are equivalent to the radar backscattering coefficients when
(θ, φ) = (θ', φ').  In practice it is difficult to compute the reflectivity using Equation (12) since this
requires deriving expressions for the scattering coefficients and performing a two-dimensional
integral.  The scattering coefficients can be computed by assuming either a deterministic form or a
statistical distribution function for the surface roughness, such as periodic, as with a furrowed
field, or randomly rough, as is more often the case in natural environments.  Randomly rough
surfaces may be modeled statistically in terms of two parameters: the height standard deviation, σ,
and the horizontal correlation length, l.  Many approaches to deriving theoretical expressions for
reflectivity have been developed using these parameters (e.g. Fung and Eom, 1981; Tsang and
Newton, 1982; Tsang et al., 1985).  Although they provide insight into the scattering mechanisms,
these expressions are not easy to use since they require detailed knowledge of the soil surface
height and slope statistics, and their computational accuracy is often limited in practical situations.  
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A simpler, semi-empirical formulation has been proposed (Wang and Choudhury, 1981; Wang
et al., 1983) which also includes two surface parameters: a height parameter, h (which is related to
σ), and a polarization mixing parameter, Q (which is related to both σ and l).  The reflectivity, rsp,
is then related to that of a smooth soil, rop, by:

rsv  =  [ (1 - Q) rov + Q roh
 ] exp (-h) (13)

rsh
  =  [ (1 - Q) roh

 + Q rov ] exp (-h) (14)

Values for Q and h' have been determined for some soil roughness conditions from ground-
based radiometer observations.  However the experimental database is currently too limited to
validate quantitatively these roughness parameterizations over a substantial range of conditions.
For analysis of data at 1.4 GHz, when surface roughness conditions may be unknown, a value of
zero is often assigned to Q, and a value between 0 and 0.3 is typically assumed for h (Jackson,
1993).  It must be emphasized that the above modeling descriptions do not attempt to fully describe
or represent the detailed scales of roughness variability present in nature, i.e. specific geometric
structures, azimuthal anisotropy, time-varying (wind-generated) roughness, etc., but only to
capture in simplified form, and with few parameters, the major phenomenological and observable
roughness effects on microwave brightness.  In the retrieval algorithm developed here, the
parameters h and Q are considered as “calibration parameters”.  They will be estimated empirically,
and for a given location are not expected to vary significantly over time at the ~70-km AMSR scale.

(b) Vegetation Effects

Vegetation is represented in the model as a uniform, single-scattering layer above a rough soil.
The subsurface soil parameters (moisture and temperature) may vary with depth.  However, the
soil characteristics—texture, hydraulic, and thermal properties, etc.—are considered uniform with
depth.  Following the treatments of Mo et al. (1982) and Kerr and Njoku (1990) the brightness
temperature at the top of the vegetation layer, Tbp, can be written as a function of soil brightness

temperature, Tbsp, soil reflectivity, rsp, vegetation opacity, τc, vegetation single-scattering albedo,

ωp, and vegetation effective temperature, Tce:

Tbp  =  Tbsp exp(-τ c) + Tce (1 - ωp) [1 - exp(-τ c)] [1 + rsp exp(-τ c)] (15)

The reflectivity of the two-layer soil/vegetation surface, rp, is a function of the soil reflectivity,

rsp, and vegetation opacity, τc:

rp  =  rsp exp(-2τ c) (16)

Use of the term “effective temperature” for the soil and vegetation temperatures in Equations
(7) and (15) emphasizes the fact that when the physical temperatures of the media are nonuniform
the effective temperatures appearing in the radiative transfer expressions are weighted means of the
actual temperatures.  (In the model used here the vegetation temperature is considered uniform,
hence in this case Tce is the actual vegetation temperature.)  In Equation (15) the single scattering
albedo has a polarization dependence since the scattering depends on the relative orientations of
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leaves, stalks, and branches within the vegetation volume (Karam et al., 1992).  The opacity, τc,
may also exhibit a polarization dependence, but there is little evidence to show that this is of
comparable significance to the other modeled effects.

The dependence of τc on vegetation columnar water content, Wc, follows an approximately
linear relationship which may be written as:

τ c  =  b Wc / cosθ (17)

The factor, cosθ, accounts for the slant observation path through the vegetation, and b is a
parameter that depends weakly on vegetation type at low frequencies (< 10 to 15 GHz), and is
approximately proportional to frequency in this range (Jackson and Schmugge, 1991)  The single-
scattering albedo, ωp, does not exhibit a significant, observable dependence on frequency or
vegetation water content.  It is also considered a calibration parameter in the retrieval algorithm.

(c) Surface Heterogeneity

For a heterogeneous scene (Figure 7), Equation (15) must be interpreted in the sense that the
parameters and terms represent area-weighted averages over the scene components within the
observed footprint.  The horizontal footprint dimension and area-weighting are defined by the
antenna pattern, which can be viewed as a two-dimensional weighting function.

If we consider a simple representation, in which the antenna pattern is constant within the
footprint area, and zero outside, then the observed brightness temperature, Tb, will be an area-
average of the component brightness temperatures, Tbj, within the footprint, i.e.

Tb   =  fj Tbj∑
j = 1

N

(18)

where fj are the fractional coverages of N distinct surface types within the footprint (the fj sum to
unity).  A simplified analysis carried out by Njoku et al. (1995b) shows that estimates of area-
averaged geophysical variables (surface temperature, Te, vegetation water content, Wc, and soil
moisture, m) retrieved from the area-averaged brightnesses, Tb,will be related to the component
variables by the following equations:

Te  =  1e  fj ej Tej∑
j = 1

N

(19)

Wc  =  - cosθ
b

 ln fj exp[-bWcj
/cosθ]∑

j = 1

N

(20)

m  =  

fj mj exp[-bWcj
/cosθ]∑

j= 1

N

exp[-bWc/cosθ]
(21)
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e  =  fj ej∑
j = 1

N

(22)

The effects of nonlinearity caused by the presence of vegetation are evident.  We may define
“composite” parameters, x ', (where x may refer to Te, Wc, or m) as those obtained by a straight
area-averaging of the geophysical variables over the footprint, i.e.

x'  =  fj∑
j = 1

N

  xj (23)

We can then examine the differences, ∆x = x - x ', between variables retrieved from area-averaged
brightnesses (Equations (20)-(22)) and those obtained directly by area-averaging the component
variables (Equation (23)).  Simulations of ∆x have been carried out for a variety of two-component

surfaces (Njoku et al., 1995b).  Figure 8 shows the results for soil moisture, ∆m.  The effects of
nonlinearity are not large, except in situations of large contrasts within the footprint between
roughly equal fractions of bare soil and dense vegetation.  These cases will be considered carefully
when interpreting the AMSR land retrievals.

For purpose of our simplified model description, we limit further treatment here to the two-
component case of uniform vegetation and bare soil, which considers, satisfactorily, the most
significant effects of heterogeneity.  In this case, N = 2, and we can denote f1 as the vegetation
fractional cover, and f2 = 1 - f1 as the bare-soil fractional cover.  The bare-soil brightness
temperature, Tbp2

, for scene component j = 2, is computed from Equation (6) (with rop replaced by

the rough soil form, rsp (Equations (13) and (14)).  The vegetated-surface brightness temperature,
Tbp1

, for scene component j = 1, is computed from Equation (15), with the additional

simplification that the soil underneath the vegetation layer is considered to be at the same
temperature as the vegetation, i.e. Tse = Tce (for this fraction of the scene only).

 (d)Atmospheric Effects

The microwave brightness temperature, TBp, observed by a spaceborne radiometer above the

atmosphere is given by:

TBp  =  Tu + exp(-τ a) [Tbp + rp {Td + Tsky exp(-τ a)}] (24)

where Tu and Td are the upwelling and downwelling atmospheric radiation, Tsky is the space

background brightness (2.7 K), τa is the atmospheric opacity, rp is the surface reflectivity, and Tbp

is the surface brightness temperature (Equations (15) and (16)).  Standard radiative transfer
expressions for Tu and Td may be found in the literature, e.g. Hofer and Njoku (1981).  For low
atmospheric absorption (as is the case at 6.9 and 10.6 GHz), Tu and Td can be expressed using the
effective radiating temperature approximation:

Tu  ≅   Td  ≅   Tae [1 - exp(-τa)] (25)
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where, Tae is the weighted-mean temperature of the microwave-absorbing region of the
atmosphere.  This expression is accurate at f < 11 GHz over a wide range of atmospheric
temperature and water vapor profiles and cloud conditions.  Tae is frequency dependent, and
depends also on the vertical distributions of atmospheric temperature, humidity, and liquid water.
For f < 11 GHz, the dependence of Tae on atmospheric profile variability is small, and Tae may be
expressed simply as a function of the surface air temperature, Tas, and a frequency-dependent

offset δTa:

Tae  ≅   Tas - δTa (26)

Values for δTa are obtained from calculations using climatological atmospheric data, neglecting
effects of clouds and rain.

The opacity, τa, along the slant-range atmospheric path is dependent on the viewing angle, θ,
and the vertical-column amounts of water vapor, lv, and cloud liquid water, lw, in the atmosphere,
and can be written (for a plane parallel atmosphere) as:

τa  =  ( ao + av lv + aw lw ) / cosθ (27)

where, ao, av, and aw are frequency-dependent coefficients.

(e) Model Summary, TBi  =  Φi(x)

The soil-vegetation-atmosphere radiative transfer model described by Equations (1), (2), (6),
(13)–(17), and (24)–(27) can be represented as:

TBi  =  Φi(x) (28)

where the model function, Φi(x), relates brightness temperature observations, TBi, at channel i, to

the parameters, x = {xj}, of the soil-vegetation-atmosphere medium.

The model parameters are listed in Table 5.  The parameters are grouped in two categories: (a)
parameters defining sensor and media characteristics or empirical relationships, and (b) retrievable
geophysical variables.  The atmospheric variables are included in the retrievable list although the
sensitivity of brightness temperature to these variables (over land), at frequencies below 37 GHz,
is too low to afford reliable retrieval accuracies.  (Retrieval of water vapor may be possible over
some surfaces of low variability, particularly if ancillary data are available to characterize the
background surface.
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Table 5: Parameters of the Microwave Model, Φi(x)

Parameters Description

(a) Media/Sensor Parameters

Atmosphere:
ao Oxygen opacity
av, aw Water vapor and liquid opacity coefficients

δTa
Absorption-temperature differential, K

Vegetation:
ωp

Single scattering albedo

b Opacity coefficient

f1 Fractional cover

Soil:
h, Q Roughness coefficients
ρb Bulk density, g cm-3

s, c Sand and clay mass fractions

Sensor:
θ Viewing angle, deg

ν Frequency, GHz

p Polarization

(b) Media Variables

Atmosphere:
lv Columnar water vapor, g cm-2

lw Columnar liquid water,
Tas Surface air temperature, K

Vegetation:
Tce Effective temperature, K
Wc Water content, kg m-2

Soil:
m Surface moisture content, g cm-3

Tse Effective Temperature, K
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(e) Sensitivities

The normalized sensitivity, Si, of brightness temperature to a given geophysical parameter, xi,

can be expressed as:

Si  =    Xi 
∂Φ
∂xi  x = xo

  (29)

where Xi are typical geophysical parameter dynamic ranges, and xo are baseline values of the

parameters, x , at which the sensitivities are evaluated.  Normalized sensitivities are computed to
indicate more realistically the relative magnitudes of the sensitivities to the different geophysical
variables, in Kelvins.  Table 6 shows the computed sensitivities, for horizontal and vertical
polarizations, at 6.9 GHz.  Two cases are shown, one for a baseline of bare soil and one for
vegetation water content of 1.5 kg m-2 (spanning the range of vegetation conditions under which
we believe soil moisture retrievals will be feasible).   The sensitivity to moisture and vegetation are
clearly much reduced for the higher vegetation level, although good sensitivity remains to surface
temperature.  The sensitivity differences between H and V polarizations, and between frequencies
(10.6 GHz not shown), enable the four-channel retrieval algorithm to discriminate satisfactorily
between the moisture, vegetation, and temperature variables.  Sensitivities to other variable and
model parameters are typically an order of magnitude or so less than to the three main variables (
soil moisture, surface temperature, and vegetation water content), and hence are not dominant
factors in the retrievals.

Table 6(a):  Normalized sensitivities at 6.6 GHz H and V polarizations, θ = 50°, for given
parameter ranges, Xi, and baseline values, xoi.  Vegetation baseline = 0 kg m-2 (bare soil).

———————————————————————————————————————
Parameter Range Baseline Sensitivity, H Sensitivity, V

(Xi) (xoi) Si (K) Si (K)
———————————————————————————————————————
Soil moisture (g cm-3) 0.32 0.15 95.5 60.1

Surface temperature (°C) 40 20 25.1 35.7

Vegetation water (kg m-2) 1.5 0 211.3 28.1

Atmos. Water Vapor (mm) 5 2.5 1.3 0.18

———————————————————————————————————————
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Table 6(b):  As for Table 6(a), except vegetation baseline = 1.5 kg m-2.

———————————————————————————————————————
Parameter Range Baseline Sensitivity, H Sensitivity, V

(Xi) (xoi) Si (K) Si (K)
———————————————————————————————————————
Soil moisture (g cm-3) 0.32 0.15 8.5 5.3

Surface temperature (°C) 40 20 22.0 20.6

Vegetation water (kg m-2) 1.5 1.5 10.9 1.2

Atmos. Water Vapor (mm) 5 2.5 0.12 0.02

———————————————————————————————————————

(f) Retrieval Model Approximation,  TBi'  =  Φi'(x)

In order to reduce the parameterization of the microwave model to a convenient set of three
dominant surface variables that can be retrieved from the four low-frequency AMSR channels, the
following approximations are made:

(1) The soil moisture profile is considered uniform.

(2) The soil and vegetation temperature profiles are considered uniform.

(3) The surface is considered uniformly-vegetated, i.e. f1 = 1.  All retrieved parameters, me, Te,
and we, will then represent area-averaged quantities over the ~ 70-km AMSR footprint.

With these approximations, we distinguish this simplified model from that above by using the
notation:

TBi'  =  Φi'(x) (30)

The three retrievable variables are then:

• me : Surface soil moisture (g cm-3)—the area-averaged mean moisture in the top few mm
(skin surface layer) of soil.

• we : Vegetation water content (kg m-2)—the area-averaged water content in the vertical
column of vegetation overlying the soil.

• Te : Land-surface temperature (K)—the area-averaged mean 6.9 and 10.7 GHz microwave
radiating temperature of the surface.

A nonlinear parameter estimation method is used as the baseline algorithm for deriving the
AMSR land-surface parameters.  The algorithm is based on the radiative transfer model, Φi'(x).
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3.1.2 Mathematical Description of the Algorithm

Passive microwave retrievals of land surface parameters have in the past used mainly surface
classification and linear-regression methods (e.g. Jackson and LeVine, 1996).  Nonlinear
algorithms (iterative and neural-network based) have also been used, particularly to improve
retrievals where the physics of the radiative transfer and interaction processes are nonlinear (Zurk
et al., 1992; Njoku et al., 1994).  Bayesian estimation techniques have also been investigated to
include, optimally, a-priori information on sensor noise, model uncertainties, probability
distributions of the parameters being estimated, and ancillary data from ground truth or other
sensors. (Davis et al., 1995).  

(a) Baseline Algorithm

The baseline AMSR land-surface-products computational procedure uses a nonlinear, iterative
retrieval algorithm to simultaneously retrieve the three primary variables, me, we, and Te, from
measurements at four channels (i = 1 to 4).  The procedure adjusts the set of variables x = {me,

we, and Te} so as to minimize the weighted-sum of squared differences, χ2, between observed,

TBi
obs, and computed, Φi'(x), brightness temperatures.  The efficient Levenberg-Marquardt

minimization algorithm is used (Press et al., 1989).  

χ 2  =  
TBi

obs - Φi'(x)

σi

2

∑
i = 1

4

(31)

At each retrieval point, the algorithm starts with a-priori values of the geophysical variables,
xo , and adjusts these iteratively until convergence to the χ2 minimum is achieved.  σi represents

the measurement noise in channel i.  Since the forward model, Φ'i(x), is mathematically well-
behaved, convergence is rapid and accurate, except where the forward model does not adequately
represent the large-area emission physics (e.g. where snow or open water occur in the footprint),
or where the sensitivity to a given parameter is too low.  This occurs, for example, in the retrieval
of me and we in densely-vegetated areas.  In these cases the retrieved values of me and we will be
meaningless.  In actual operation of the algorithm, the me and we retrieval errors increase as a
function of increasing vegetation content.  Atmospheric variables of the model—lv, lw, Tas, and

δTa—are given a-priori values derived from climatologies and/or model output (Meeson et al.,
1995; Bengtsson et al., 1982).  The atmospheric parameters ao, av, and aw, are constants, and are

well-known from the literature.  The parameters b, h, Q, ωp, ρb, s, and c are given fixed values,
which may require empirical fine-tuning in the immediate post-launch period, to compensate for
residual uncertainties and offsets in the physical model and to “calibrate” the model to AMSR
observations at designated calibration sites.

(b) Enhanced Algorithm

An algorithm based on Bayesian estimation, as described by Davis et al. (1995), will be
investigated in a research mode for implementing constraints on the retrievals in a formal way—by
incorporating a-priori statistics (probability distributions) of the surface and atmospheric
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characteristics.  Such information will be obtained from vegetation and soils data (Wilson and
Henderson-Sellers, 1985), digital topographic data at scales comparable to the satellite footprint
(U.S. Geological Survey), operational ECMWF surface air temperature and humidity fields
(Bengtsson et al., 1982), and other model output and climatological fields (Meeson et al., 1995).
Much of the flexibility in the Bayesian approach lies in the ability to adjust the a-priori distribution
covariances relative to the sensor and model mismatch covariances in order to ensure stable and
well-behaved retrievals.  The a-priori geophysical variable covariances will be poorly known at the
start of the AMSR mission.  However, as the database of global retrievals is built up after launch,
the algorithm will actually “learn” and become more optimal in the sense of utilizing improved a-
priori knowledge of the geophysical variables.

(c) Output products

Global retrieved-variable data sets will be generated in swath format (level 2).  Level 3
products will be generated from level 2 in order to analyze global gridded fields and to develop
higher level products.  The level 3 products will include day minus night brightness temperature
and surface temperature difference products, to investigate the use of diurnal variability in
obtaining additional soil moisture information, and for use with climate models (Randall et al.,
1991; Pitman and Henderson-Sellers, 1995).  Level 2 products will be produced at the original
sampling and spatial resolution of the level 1C input data.  Level 3 products will be produced on a
0.25° x 0.25° latitude-longitude grid.  Consideration will be given to producing the data on other
grids (such as the NSIDC EASE-Grid).  Output data will include quality flags indicating the
expected accuracy of the retrievals at each point.

3.1.3 Variance and Uncertainty Estimates

Monte Carlo simulations are currently being performed to estimate the retrieval uncertainties of
the baseline algorithm.  Parameters of the forward model are assigned probability distributions
with variances representative of their a-priori uncertainties.  The variables to be estimated, x =
{me, we, Te}, are simulated as sets of uniform random variates spanning the dynamic ranges: me =
0.03 to 0.35 g cm-3;  we, = 0 to 5 kg m-2; Te = 0 to 40 °C.  From these parameter and variable

distributions, brightness temperatures, TBi = Φi(x), are computed at the four AMSR channels used

in the retrieval (6.9 and 10.6 GHz; V and H polarizations).  To these brightness temperatures
gaussian random noise of 0.3 K (1σ) is added to simulate the AMSR observations, TBi

obs*.  The

retrieval algorithm is applied to the simulated observations, and parameter estimates, x*, are
obtained.  The uncertainty estimates in the retrieval procedure are then given by the mean and
standard deviation of the errors, ε = x* - x.

3.2 PRACTICAL CONSIDERATIONS

3.2.1 Numerical Computation Considerations

The baseline algorithm has been tested by running it on Nimbus-7 SMMR data, using similar
channels, i.e. 6.6 and 10.7 GHz, V and H polarizations.  At each retrieval point, from 4 to 8
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iterations are normally required for convergence to a solution.  A solution is considered a
simultaneous retrieval of the three variables me, we, and Te.  On a SUN IPX Workstation, 1600
solution points encompassing a range of bare and vegetated sites take on average about 3 minutes
for computation, or about 112 ms per retrieval point.  Additional overhead imposed by exception
handling (see below) and output quality control may increase the processing time to a maximum of
250 ms per retrieval point.  These numbers will be reduced considerably on the higher-capability
workstations envisaged for the AMSR post-launch operational processing.

3.2.2 Programming/Procedural Considerations

The baseline algorithm, in its current version, does not require external inputs from any other
data source other than climatology.  However, algorithm enhancements will most likely be
incorporated prior to algorithm delivery, that make use of surface characteristics and model-output
data which will be stored for use by the algorithm.  The combined size of these databases is
estimated to be on the order of 5 to 20 Mbytes.  Algorithms will be written in standard FORTRAN-
90 with full portability to run on UNIX-based platforms.  Data products will be structured and
formatted according to EOSDIS guidelines.  Coordination will be maintained with the appropriate
EOSDIS DAAC in providing documentation, algorithms, and data appropriate for archival and
public distribution.

3.2.3 Calibration and Validation

The accuracy of the retrievals will depend to a large extent on the accuracy of the microwave
model.  Since radiative transfer models are simplified representations of reality, and since
radiometers typically exhibit calibration offsets which may vary from channel to channel,
calibration of the models to the satellite data is expected to be required.  This will be accomplished
by the use of calibration regions, homogeneous over large scales, that can be characterized by a
small number of parameters.  These regions in general will include tropical forests, desert regions,
and transects across desert, savanna, dry and humid forest.  Surface truth data, including surface
air-temperature, humidity, precipitation, surface moisture, and biomass, available from existing
and forthcoming experiments in some of these sites, will be used.  Values of single scattering
albedo over forests, and surface roughness coefficients over deserts, will be estimated in this
manner.

(a) Pre-launch

In the pre-launch phase, the parameterization of the microwave model will be tested using data
from the SMMR instrument on Nimbus-7.  These data exist from late 1978 through mid-1987, and
overlap in time with other datasets of model-output surface moisture and temperature, e.g. the
NCEP re-analysis (Kalnay et al.) and the GSFC Data Assimilation Office products.  Vegetation
data are available from the AVHRR NDVI Pathfinder data set.  These data sets can be used as
surrogate “climatologies” for the parameters me, we, and Te with which to compute brightness
temperatures from the microwave model for comparison with the SMMR observations.  This will
provide the basis for calibrating out biases between the model and observations.  This will require
fine-tuning after the launch of AMSR since the viewing angles, equator-crossing times,
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antenna/radiometer characteristics, and spatial resolutions of AMSR are somewhat different from
those of the SMMR.

(b) Post-launch

A major validation challenge will be the quantification of the (vegetation-dependent) soil
moisture measurement errors.  Systematic comparisons will be required between the soil moisture
fields provided by AMSR and those available from alternative measurement systems or as model
estimates, while giving appropriate recognition to the vegetation cover prevalent at the
comparison site.  The AMSR land parameter validation activities will be carried out through
collaborations with existing research efforts and field programs, augmenting these where
necessary for the specific needs of this investigation.  The following plans are being developed
specifically through collaborations with other EOS and MTPE investigators for a future
dedicated soil moisture mission (2001 and beyond time frame) (personal communication: D.
Entekhabi (MIT), J. Shuttleworth (U. Arizona), M. vanGenuchten (USDA), and F. Chen
NCEP), and will be pursued also as part of the AMSR investigation.

GCIP and GCIP Follow-on:  GCIP is currently providing a 5-year documentation of aspects
of hydrologic-atmosphere coupling across the U.S., and will leave in place an ongoing
observational framework against which soil moisture comparisons can be made.  These data
include distributed fields of rainfall from gauges and NEXRAD rain-radar systems, runoff,
modeled evaporation, analyzed fields of temperature and humidity, and, at certain locations,
arrays of sensors to provide direct measurements of soil moisture.  Augmentation of these arrays
is being planned within a 200x200 km study area in Oklahoma and Kansas as part of the
Atmospheric Radiation Measurement (ARM) Project, and could be extended elsewhere in the
Mississippi River basin.  These arrays will be valuable as direct sources of comparison data for
AMSR over selected regions of the U.S., but can serve also to validate model-based soil-moisture
estimates for the U.S. as a whole, which will then be compared with AMSR soil-moisture fields.
Maps of vegetation cover will be available from USGS and EOS MODIS land-cover data, with
which to evaluate independently the soil-moisture comparisons as a function of vegetation cover.

Detailed Validation Site:  The principal validation site being considered covers a large portion
(about 105 km2) of the Southern U.S. Great Plains, principally in the state of Oklahoma (D.
Entekhabi, personal communication).  This region has major East-West precipitation gradients
which result in a large range of seasonal soil moisture.  The vegetation cover also has a significant
range.  The region includes several major observation networks and research field sites (OK
Mesonet, ARM-CART, ARS Micronet).  It is also part of the GEWEX-GCIP focus study area.
A list of the available data sources is given in Table 1 (D. Entekhabi, personal communication).
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TABLE 1: Characteristics and Sources of Observations for Soil Moisture Validation Data Set
Development
———————————————————————————————————————
Physical Spatial Temporal
Parameter Resolution Frequency Source
———————————————————————————————————————
Surface air One Station 15 Minutes Oklahoma Mesonet
Micrometeorology per 103 km2

Soil Temperature One Station 15 Minutes Oklahoma Mesonet
per 103 km2

Soil Matric Head One Station 15 Minutes Oklahoma Mesonet
per 103 km2 Capaticance Probes

Area-Average 4 km x 4 km Hourly NWS ABRFC
Precipitation

Volumetric Soil Variable Episodic NWS NOHRSC
Moisture along Flight Aircraft Instrument

Lines (Gamma-Radiation)

Vegetation 10 km x 10 km Daily Passive Microwave
Parameters 30 km x 30 km Weekly Polar Orbiting

(DMSP & EOS) &
VIS/IR Geostationary
Satellites (GOES-8)

Volumetric 30 km x 30 km 12 Hourly NCEP NWP
Soil Moisture Initialization

Soil Temperature 30 km x 30 km 12 Hourly NCEP NWP
Initialization

Near Surface 30 km x 30 km 12 Hourly NCEP NWP
Air Parameters Initialization

Volumetric Point Episodic Gravimetric
Soil Moisture Measurements

Volumetric 0.5 km x 0.5 km Episodic Aicraft remote sensing
Soil Moisture
———————————————————————————————————————
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Through research collaborations, in which this investigator will play a lead role, a gridded soil
moisture validation data product containing fused multi-sensor observations will be produced.
Overlapping observations, observations at various scales (point and areal averages) and at
different temporal frequencies will be merged using a data fusion methodology that forms
statistically optimal estimates of the validation data set state variables (soil moisture and soil
temperature in the 0 to -5 cm and -5 to -15, and -15 to -25 cm depths on hourly basis and
vegetation leaf area index and dry and moist weight; both on 3 km x 3 km gridding).  Weights
based on the error structure of different sources of observations will be used to form a single
estimate of the state variables.  The primary aspects of the validation data strategy are:

(1) Spatially gridded and temporally regular estimates of soil moisture and temperature

(2) Choice of region with large dynamic ranges for vegetation and soil hydrothermal regime

(3) Multi-sensor approach utilizing operational and research observing systems

(4) Data fusion framework based on error structure of incoming data sources

(5) Consistent propagation of state estimates using surface water and energy balance

     Global-Scale        Validation    :  Validation on a global scale is difficult since the only independent
sources are products derived from global atmospheric models, calculated using the soil hydrology
from the budgets of energy and water at the Earth's surface.  Key parameters, such as
precipitation and the surface net radiation, depend on the parameterizations used within the
models, and their errors are often hard to assess.  Forecast centers routinely perform data
assimilation experiments with and without specific satellite products.  The regional and global
output error fields of critical near-surface parameters would then be examined regionally and
globally, such as the 2-m temperature and humidity that are measured in-situ, and are closely
linked to soil moisture initialization.  The forecast errors resulting from using different soil
moisture initializations  (model or satellite derived for example) would be examined to assess the
impact on the forecast accuracy of the satellite derived soil moisture in comparison with the
purely model derived product.   These studies will be pursued in collaboration with NCEP and
ECMWF (J. Shuttleworth, F. Chen, A. Betts, personal communication).

A separate, but related exercise is currently being pursued using Nimbus-7 SMMR-derived
products to compare with model out products of surface soil moisture and temperature

3.2.4 Quality Control and Diagnostics

Outputs of the retrieval algorithm include two diagnostic parameters: (1) N - the number of
iterations required to reach convergence; (2) χ2 - the minimum value of chi-squared achieved.

Large values of either N or χ2 are indicators of non-convergence or large errors in the retrievals.

Gridded fields of the retrieved variables, me, we, and Te, will be created by binning the data
onto weekly 1/2 x 1/2 degree latitude-longitude grids.  The number of samples in each bin, n, and
the standard deviations, sd, will be computed along with the means, xm, for each bin, to create
three sets of gridded fields for each variable.  The mean fields will be examined for spatial and
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temporal coherence in the geophysical-variable estimates; the number fields will be examined for
missing data, gaps in coverage, etc.; and the standard deviation fields will allow anomalous
retrievals to be easily identified.  Quick-look tools for routinely scanning and summarizing
statistics of these fields will be developed as part of this investigation.  General-purpose tools
currently under development by EOSDIS, or available commercially, will be used to the maximum
extent possible.

3.2.5 Exception Handling

The main causes for nonconvergence or errors of the algorithm will be footprints containing
open water, snow cover, and heavy clouds or precipitation.  Simple tests will be made for open
water conditions based on threshholds for the differences between V and H polarizations.  This
will also be used to identify land versus ocean regions.  Footprints identified as containing open
water will be flagged as such and no geophysical retrievals will be made.  The 37 GHz channels
will be used for this purpose, in addition to the 6.9 and 10.6 GHz channels, due to their higher
spatial resolution.  The 37  and 85 GHz channels will be used to identify and flag footprints
containing heavy clouds and precipitation which will degrade the accuracy of the retrievals.

Anomalous inputs may be due to bad radiometric data (e.g. spurious noise, radio-frequency
interference, calibration errors, etc.), bad locations, and other lower-level processing errors.
Checks will be made in the processing algorithms to identify these anomalies and to assign them
flags identifying the type of anomaly and impact on the retrievals.  The algorithms will be designed
to accommodate small data gaps, where the data are flagged as missing or unusable, without need
for re-initialization.

4. CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS

The retrieval of the specified land products will be limited by the assumptions made in the
model, and by the physics of the problem.  The following are the major limitations of the output
products:

• Footprints may contain mixtures of different surface types, e.g. bare soil, vegetation, rivers.
Thus, the retrievals of footprint-averaged soil moisture, temperature, and vegetation, must be
interpreted with this in mind.  The retrievals nominally represent ~ 70-km area-averages.  In
cases where there is large contrast (heterogeneity) within a footprint, the retrieved quantities
may not accurately represent area-averages due to nonlinearity in the radiative transfer
processes.  (It is assumed that area-averages are the desired output for large-scale hydrology,
climate, and ecological models).  This is not expected to be a significant issue based on prior
simulations.

• The retrieved variables represent averages over a vertical sampling depth in the medium that is
intermediate between the sampling depths at the two frequencies, 6.9 and 10.6 GHz.  These
depths vary with the amount of moisture in the soil and/or vegetation.  The different sampling
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depths at 6.9 and 10.6 GHz may give rise to some error in the retrievals where the moisture
and temperature profiles are highly nonuniform, since each retrieved variable is defined at a
single sampling depth.

• As the vegetation cover increases the retrieval errors for me and we also increase, until at large
values of we the retrievals become completely unreliable.  The vegetation threshholds for
reliability of the retrievals are only roughly-defined at this time.  Additional simulations prior to
launch, and experience with real AMSR data during the post-launch validation phase, will
establish these threshholds more precisely.

• Effects of topography, snow cover, clouds, and precipitation, are not explicitly modeled in the
retrieval algorithm.  Hence, these effects will manifest themselves as errors in the retrievals.
Topographic effects will not change with time, and can be accounted for in enhanced versions
of the baseline algorithm.
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Figure 1: Precipitation averaged over an ensemble of three 30-day forecasts for July 1993 using
the ECMWF model.  (a) Moist initial soil moisture (field capacity).  (b) Dry initial soil
moisture (25% availability).  (c) Differencebetween moist and dry.  Contours are at 1,
2, 4, 8,   mm day-1 with shading above 4 mm day-1.  (From Beljaars et al. (1996).)
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Figure 2: (a) Brightness temperature response to surface moisture (antecedent precipitation index) at 6.6 GHz using
SMMR spaceborne observations, for surfaces of different vegetation cover (Choudhury and Golus, 1988).
(b) Large-area soil moisture derived from in situ data and soil model for times of SMMR overpasses; and (c)
relationship between SMMR-derived surface emissivity and soil moisture after correction for vegetation (van
de Griend and Owe, 1994).
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Figure 3: (a) Surface air temperature versus retrieved land surface temperature using SSM/I observations (McFarland et
al., 1990).  (b) Simulated linear regression retrievals of land surface temperature, using SMMR, for surfaces
including vegetation ranging from 0 to 2 kg m-2 water content.
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Figure 4: Observed and computed relationships Figure 5: Normalized temperature weighting
between emissivity an dsoil moisture for functions for: (a) wet moisture profile, (b) profile
bare, smooth fields (loamy sand) at 1.4 GHz. with dry surface and rapidly increasing soil
(Jackson and O’Neill, 1987.) moisture with depth.
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Figure 6: Microwave soil penetration depth as a Figure 7: Schematic configuration of a radiometer
function of frequency and moisture content. viewing a heterogeneous scene (bare soil, roughness,

vegetation) from a remote platform at viewing angle, θ.
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Figure 8: Difference, ∆m  =  m - m' (see text), for a two-component surface:  (a) as a function of

fractional cover, f1, for soil moisture contrast ∆m1,2 = 0.1 g cm-3, with vegetation

water content contrast, ∆Wc1,2, as a parameter, and a wavelength of 24 cm;  (b) same

as (a) but for a wavelength of 3 cm;  (c) as a function of soil moisture contrast, ∆m1,2,

with vegetation water content contrast, ∆Wc1,2, as a parameter, for fractional cover, f1
= 0.5, and a wavelength of 24 cm;  (d) same as (c) but for a wavelength of 3 cm.
(Njoku et al., 1995b).


